As per this question, I'm trying to evaluate $$\sum_{k=2}^{\infty} \big{(} \zeta(n)^{2}-1 \big{)} = -\sum_{m=2}^{\infty} \frac{H_{-\frac{1}{m}}}{m}. $$
Here, $H_{x}$ is a generalized Harmonic number. When we proceed with the definition $$\begin{align} H_{x} = \sum_{k=1}^{\infty} \binom{x}{k} \frac{(-1)^{k}}{k} \end{align} $$ and consider the fact that relates this expression to the unsigned Stirling numbers of the first kind: $$\begin{align} (-1)^n {-m \choose n} = {n+m-1 \choose n} = \frac{1}{n!} \sum_{i=0}^n \left[ {n \atop i} \right] m^i , \end{align} $$ we can replace $m$ by $\frac{1}{m}$ and rearrange sums to obtain:
$$\begin{align} \sum_{m=2}^{\infty} \frac{H_{-\frac{1}{m}}}{m} &= - \sum_{m=2}^{\infty} \sum_{k=1}^{\infty} \sum_{i=0}^{k} \frac{1}{k k!} m^{-(i+1)} \left[ {k \atop i} \right] \\ &= - \sum_{k=1}^{\infty} \sum_{i=0}^{k} \frac{1}{k k!} \left[ {k \atop i} \right] \sum_{m=2}^{\infty} m^{-(i+1)} \\ &= - \sum_{k=1}^{\infty} \sum_{i=0}^{k} \frac{1}{k k!} \left[ {k \atop i} \right] (\zeta(i+1) - 1) \\ &= - \bigg{(} \sum_{k=1}^{\infty} \frac{1}{kk!} \bigg{(} \sum_{i=0}^{k} \left[ {k \atop i} \right] \zeta(i+1) - \sum_{i=0}^{k} \left[ {k \atop i} \right] \bigg{)} \bigg{)}. \end{align}.$$
Now, we know that $\zeta(1) = \infty$ and that $\left[ {k \atop 0} \right] = 0$. In order to evaluate the sum above, I thus wonder:
Question: what is $\lim_{t \to 0} \left[ {k \atop t} \right] \zeta(t+1) $ ?