I'm a bit confused regarding this question. I've been trying to solve it and have gotten to the same answer ($3/8$) thrice now. I have no idea where I'm going wrong and would really appreciate some help figuring it out. Here's my solution:
$$\lim_{x \to 0}\frac{x\tan2x-2x\tan x}{(1-\cos2x)^2}$$ Applying L'Hospital's rule,
$$\lim_{x \to 0}\frac{\tan2x+x(\sec^22x)(2)-2\tan x-2x\sec^2x}{2(1-\cos2x)(\sin2x)(2)}$$ Dividing numerator and denominator by $2x$, $$\begin{align*} \lim_{x \to 0}&\frac{(\frac{\tan2x}{2x})+(\frac{2x(\sec^22x)}{2x})-(\frac{2\tan x}{2x})-(\frac{2x\sec^2x}{2x})}{4(1-\cos2x)\frac{(\sin2x)}{2x}}\\ &=\lim_{x \to 0}\frac{1+\sec^22x-1-\sec^2x}{4(1-\cos2x)}\\ &=\lim_{x \to 0}\frac{\sec^22x-\sec^2x}{4(1-\cos2x)} \end{align*}$$ Applying L'Hôpital's rule (again), $$\lim_{x \to 0}\frac{(2)(\sec2x)(\sec2x)(\tan2x)(2)-(2)(\sec x)(\sec x\tan x)}{4(\sin2x)(2)}$$ $$=\lim_{x \to 0}\frac{(2)(\sec^22x)(\tan2x)-(\sec^2x)(\tan x)}{4(\sin2x)}$$ Dividing numerator and denominator by $2x$, $$\begin{align*} &=\lim_{x \to 0}\frac{(2)(\sec^22x)(\frac{\tan2x}{2x})-(\sec^2x)(\frac{\tan x}{2x})}{4(\frac{\sin2x}{2x})}\\ &=\lim_{x \to 0}\frac{(2)(\sec^22x)(\frac{\tan2x}{2x})-(\sec^2x)(\frac{\tan x}{x})(\frac{1}{2})}{4(\frac{\sin2x}{2x})}\\ &=\lim_{x \to 0}\frac{(2)(\sec^22x)(1)-(\sec^2x)(1)(\frac{1}{2})}{4(1)}\\ &=\frac{(2)(\sec^20)(1)-(\sec^20)(1)(\frac{1}{2})}{4(1)}\\ &=\frac{(2)(1)(1)-(1)(1)(\frac{1}{2})}{4(1)}\\ &=\frac{2-\frac{1}{2}}{4}\\ &=\frac{\frac{3}{2}}{4}\\ &=\frac{3}{8}. \end{align*}$$