$(X, ||• ||) $ be a $d$ dimensional normed linear space over $K$.
$\beta = \{e_1,e_2,e_3,...,e_d\} \text {be a basis of } X$
Given any, $x\in X$ has a unique representation of the form
$x= x_1 e_1 + x_2 e_2 +... +x_n e_n (x_j \in K,\forall j\in \mathbb{N}_d ) $
Then, $(x_1, x_2, x_3,..., x_d) $ is defined to be the coordinate of $x$ with respect to $\beta$.
Question : $$\text{ Given any sequence} (x^{(n)}) _{n\in \mathbb{N}}\text{ and } x \text{ in } X $$
$(x^{(n)})$$ \text{ converges to } x \text { iff it converges Co-ordinatewise. i.e } (x_j) ^{n}\to (x_j) \space{ } \forall j \in \mathbb{N}_d$