When performing a multiple integral with a transformation, e.g. $T:x=g(u,v), y=h(u,v)$, the following identity is true:
$$\iint_R f(x,y)dA = \iint_S f(g(u,v), h(u,v)) |J(u,v)| dA$$
where $R=T(S)$ and $$J(u,v)= \frac{\partial (x,y)}{\partial (u,v)} = \left | \begin{matrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{matrix} \right | = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$
Is there an intuitive explanation for why $|J(u,v)|$ must be placed in the right hand side of the integral identity in order for one to integrate over $S$?