well ,i get this solution from wolframalpha and don't know where to start to prove it , or how to get this result.
$$\sum_{i=1}^N a^{N-i} *i = \frac{a^{N+1}-a*(N+1)+N}{(a-1)^2}$$
please help
well ,i get this solution from wolframalpha and don't know where to start to prove it , or how to get this result.
$$\sum_{i=1}^N a^{N-i} *i = \frac{a^{N+1}-a*(N+1)+N}{(a-1)^2}$$
please help
i finally did it ;Paul, herb steinberg and Hans Lundmark thanks a lot guys. Here is the proof
$$\sum_{i=1}^N a^{N-i}*i= \sum_{i=0}^{N-1} a^{N-(i+1)}*(i+1) $$
$$=\sum_{i=0}^{N-1} a^{N-i-1}*(i+1)$$
$$= \sum_{i=0}^{N-1} a^{N-i-1}*i+ \sum_{i=0}^{N-1} a^{N-i-1} $$
$$= \frac{1}{a} * \sum_{i=0}^{N-1} a^{N-i}*i + \sum_{i=0}^{N-1} a^{N-i-1}$$
$$ = \frac{1}{a} * (\sum_{i=1}^{N-1} a^{N-i}*i + a^{N-0} * 0) + \sum_{i=0}^{N-1} a^{N-i-1} $$
$$= \frac{1}{a} * (\sum_{i=1}^{N-1} a^{N-i}*i) + \sum_{i=0}^{N-1} a^{N-i-1} $$
$$ = \frac{1}{a} * (a^{N-1}*1 +...+ a^{N-(N-1)}*(N-1)+0) + \sum_{i=0}^{N-1} a^{N-i-1}$$
$$= \frac{1}{a} * (a^{N-1}*1 +...+ a^{N-(N-1)}* (N-1)+ (a^{N-N}*N-a^{N-N}*N)) + \sum_{i=0}^{N-1} a^{N-i-1}$$
$$= \frac{1}{a} * ((a^{N-1}*1 +...+ a^{N-(N-1)}* (N-1)+ a^{N-N}*N)-a^{N-N}*N) + \sum_{i=0}^{N-1} a^{N-i-1}$$ $$= \frac{1}{a} * ((\sum_{i=1}^N a^{N-i}*i)-N) + \sum_{i=0}^{N-1} a^{N-i-1} $$
then we have
$$\sum_{i=1}^N a^{N-i}*i=\frac{1}{a} * (\sum_{i=1}^N a^{N-i}*i-N) + \sum_{i=0}^{N-1} a^{N-i-1} / * a$$
$$a*\sum_{i=1}^N a^{N-i}*i=\sum_{i=1}^N a^{N-i}*i-N + a*\sum_{i=1}^{N-1} a^{N-i-1} $$
$$a*\sum_{i=1}^N a^{N-i}*i=\sum_{i=1}^N a^{N-i}*i-N + a*\sum_{i=0}^{N-1} a^{N-i-1} / - \sum_{i=1}^N a^{N-i}*i $$
$$a*\sum_{i=1}^N a^{N-i}*i-\sum_{i=1}^N a^{N-i}*i= a*\sum_{i=0}^{N-1} a^{N-i-1} - N $$
$$a*\sum_{i=1}^N a^{N-i}*i-\sum_{i=1}^N a^{N-i}*i= a^{N-1+1}*\sum_{i=0}^{N-1} a^{-i} - N $$
$$(a-1)*\sum_{i=1}^N a^{N-i}*i= a^{N}*\frac{(\frac{1}{a})^{N}-1}{(\frac{1}{a})-1}-N$$
$$(a-1)*\sum_{i=1}^N a^{N-i}*i= a^{N}*\frac{((\frac{1}{a})^{N}-1)}{((\frac{1}{a})-1)}-N$$
$$(a-1)*\sum_{i=1}^N a^{N-i}*i= \frac{((\frac{a^N}{a^N})-a^{N})}{\frac{1-a}{a}}-N$$
$$(a-1)*\sum_{i=1}^N a^{N-i}*i= (a*\frac{(1-a^{N})}{(1-a)})-N$$
$$(a-1)*\sum_{i=1}^N a^{N-i}*i= (a*\frac{(a^{N}-1)}{(a-1)})-N$$
$$(a-1)*\sum_{i=1}^N a^{N-i}*i= \frac{a^{N+1}-a-N*a+N}{(a-1)}$$
$$\sum_{i=1}^N a^{N-i}*i= \frac{a^{N+1}-a-N*a+N}{(a-1)^2}$$
$$\sum_{i=1}^N a^{N-i}*i= \frac{a^{N+1}-a*(N+1)+N}{(a-1)^2}$$
Again thanks a lot.
a^N
is a constant term and can be factored to the left.i * a^-i
looks a lot like the first derivative ofa^-i
with respect toa
, a fact that could also be useful. – Paul Nov 21 '21 at 04:41