This can be proved purely mentally in $< 10$ seconds as follows
$$\begin{align} &\ \ \ \overbrace{(5i\!+\!\color{#0a0}2)(5i\!+\!\color{#0a0}3)}^{\!\!\textstyle\small \equiv \color{#0a0}6\!\pmod{\!25},} \overbrace{(5i\!+\!\color{#c00}1)(5i\!+\!\color{#c00}4)}^{\!\!\textstyle\small \equiv \color{#c00}{4}\!\pmod{\!25}\rlap{, \ {\rm by}\ \ 5\mid \color{#0a0}{2\!+\!3},\color{#c00}{1\!+\!4}}}\,\ \ \ \bmod 100\\[.2em]
=\, &\ 4\:\! (5i\!+\!2)(5i\!+\!3)(5i\!+\!1)(5i\!+\!4)/4\, \bmod 25)\\[.2em]
=\, &\ 4\:\!(\color{#0a0}6\cdot \color{#c00}4/4\bmod 25)\\[.2em]
=\, &\ 4\:\!(\color{#0a0}6)\end{align}\qquad$$
We used $\,4a\bmod 4n\:\! =\:\! 4(a\bmod n)\,$ by MDL = mod Distributive Law, and
also that $\,4\:\!$ divides a sequence of $\:\!4\:\!$ consecutive integers.
Remark $ $ This easily generalizes as below (above is case $\,p=5)$
$$\begin{align} p=2k\!+\!1 \Rightarrow
\ &(pi\!+\!1)(pi\!+\!2)\cdots (pi\!+\!p\!-\!1)\\[.2em]
=\ &(pi\!+\!\color{#c00}1)(pi\!+\!\color{#c00}{p\!-\!1})\cdots (pi\!+\!\color{#c00}k)(pi\!+\!\color{#c00}{k\!+\!1})\\[.2em]
\equiv\ &(\color{#c00}{p-1})!\!\pmod{p^2}\end{align}\qquad\qquad$$
where, as in OP, we group terms to employ this difference of squares generalization
$$\begin{align}\color{#c00}p\mid\color{#0a0}{a\!+\!b}\ \Rightarrow\ &(pi\!+\!a)(pi\!+\!b) = \color{#c00}{p^2}i^2+\color{#c00}p(\color{#0a0}{a\!+\!b})i+ab\equiv ab\pmod{\color{#c00}{p^2}}\\[.3em]
\rm{generalizing}\ \ \ &(pi\!+\!a)(pi\!-\!a) = p^2i^2 -a^2\, \equiv\ a(-a)\ \equiv ab\pmod{p^2}\end{align}\qquad\qquad$$
Hence, applying MDL as above we conclude that, for all odd $\,p>0$
$$\bbox[5px,border:1px solid #c00]{(pi\!+\!1)(pi\!+\!2)\cdots (pi\!+\!p\!-\!1)\,\equiv\, (p\!-\!1)!\pmod{(p\!-\!1)p^2}}$$