IF we assume that we know what $e$ is and we're not treating this problem as it's unknown and we're trying to calculate it's numerical value, you can verify it converges to $e$ treating it as a simple limit, as:
$$\lim_{n\to\infty }\left(1+\frac{1}{n}\right)^n=\lim_{n\to\infty }e^{n\ln\left(1+\frac{1}{n}\right)}=\lim_{n\to\infty }e^\frac{\ln\left(1+\frac{1}{n}\right)}{\frac{1}{n}}=\lim_{x\to 0}e^{\frac{\ln(1+x)}{x}},$$
where we let $x=\dfrac{1}{n}$.
Then, it is
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{1+x} = 1,$$
by L'Hospital's rule.
So, all in all:
$$\lim_{x\to 0}e^{\frac{\ln(1+x)}{x}}=e^1=e.$$
On the other hand, if you want a "precise" elaboration on calculating the numerical value via series, the user mathlove has posted a great answer on this post, which I am just pasting below for the sake of completeness of my attempted answer:
\begin{align}\left(1+\frac 1n\right)^n&=\sum_{k=0}^{n}\binom{n}{k}\left(\frac 1n\right)^k\\&=\sum_{k=0}^{n}\frac{n(n-1)\cdots(n-k+1)}{k!}\left(\frac 1n\right)^k\\&=\sum_{k=0}^{n}\frac{1}{k!}\left(1-\frac 1n\right)\left(1-\frac 2n\right)\cdots\left(1-\frac{k-1}{n}\right)\\&\lt \sum_{k=0}^{n}\frac{1}{k!}\\&=1+\frac{1}{1}+\frac{1}{2}+\frac{1}{3\cdot 2}+\frac{1}{4\cdot 3\cdot 2}+\cdots+\frac{1}{n\cdot(n-1)\cdots 2}\\&\lt 1+\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\cdots+\frac{1}{2^{n-1}}\\&=3-\frac{1}{2^{n-1}}\\&\lt 3.\end{align}
After all, it really comes down to what the user Randall said in the comments.