Is there a way to evaluate the following integral involving three logarithmic functions
$$ I(y)=\int \frac{\log(1+y)\log(y)\log(1-y)}{y}\mathrm{d}y $$
?
Is there a way to evaluate the following integral involving three logarithmic functions
$$ I(y)=\int \frac{\log(1+y)\log(y)\log(1-y)}{y}\mathrm{d}y $$
?
According to the formula section of sequence $A049281$ in $OEIS$ $$\frac{\log (1-y) \log (1+y)}{y^2}=-\sum_{n=0}^\infty\Bigg[ \int_0^1x^{n} \log \left(1+\frac{1}{\sqrt{x}}\right)\,dx\Bigg] y^{2n}$$ $$a_n=\int_0^1x^{n} \log \left(1+\frac{1}{\sqrt{x}}\right)\,dx=\frac{1}{2 (n+1)^2}+\frac{\log (2)-\Phi (-1,1,2 n+3)}{n+1}$$ where appears s the Lerch transcendent function.
So $$\frac{\log(1+y)\log(y)\log(1-y)}{y}=-\sum_{n=0}^\infty a_n\,y^{2n+1}\log(y)$$ $$\int y^{2n+1}\log(y)\,dy=\frac{y^{2 n+2} (2 (n+1) \log (y)-1)}{4 (n+1)^2}$$
So, here is the formula.
Integrating between $0$ and $1$ and using $30$ terms, what is obtained is
$$\frac{129331573539024596038309003920483687963710634649045728750361929932743}{444999142480969921593398700100589348217215915374013669213491200000000}$$ which is $0.29063$ while the exact solution given in this question is, numerically, $0.29072$