So I've been playing around with the following double integral $S$ where:
$$ S= \lim_{z \to \infty}\frac{1}{z^2} \int_{0^+}^z \exp\left({\frac{\int_{0^+}^y \ln (x) dx}{y}}\right) dy $$
Now, if I do the $dy$ integral I get:
$$ S =\lim_{z \to \infty}\frac{1}{z^2} \int_{0^+}^z \exp\left({\frac{y \ln y - y}{y}}\right) dy $$
OR:
$$ S =\lim_{z \to \infty}\frac{1}{z^2} \int_{0^+}^z \exp({{ \ln y - 1}}) dy $$
OR:
$$ S = \frac{e^{-1}}{2}$$
Let us use limit as a sum on the integrals on the $S$ double integral where $\epsilon \to 0$, $N \to \infty $ and $N \epsilon = z \to \infty$:
$$ S = \lim_{N \to \infty} \frac{\exp({ \frac{\ln (\epsilon)}{\epsilon} \cdot \epsilon}) \epsilon + \exp({ \frac{\ln (2! \epsilon^2)}{2\epsilon} \cdot \epsilon}) \epsilon + \dots + \exp({ \frac{\ln (N! \epsilon^N)}{N\epsilon} \cdot \epsilon}) \epsilon}{(N \epsilon)^2 }$$
$$ S = \lim_{N \to \infty} \frac{1 + (2!)^{1/2} + (3!)^{1/3} + (4!)^{1/4} + \dots + (N!)^{1/N}}{N^2} $$
Hence,
$$e^{-1}/ 2 = \lim_{N \to \infty} \frac{1 + (2!)^{1/2} + (3!)^{1/3} + (4!)^{1/4} + \dots + (N!)^{1/N}}{N^2} $$
Question
Is this correct? (I am worried about the use of limit of a sum twice without any concern of convergence).