For the following question: Given $ \equiv 4 \pmod{13}$, and $ \equiv 9\pmod{13}$. If $\equiv ^2+^2\pmod{13}$ with $0\leq c \leq 12$ . Find the value of $c$.
Here is my attempt :
$a^2 \equiv 4 \cdot 4 \pmod{13}$
$a^2 \equiv 16 \pmod{13}$
$b^2 \equiv 9\cdot 9 \pmod{13}$
$b^2 \equiv 81 \pmod{13}$
then
$a^2+b^2 \equiv 81+16 \pmod{13}$
$a^2+b^2 \equiv 97 \pmod{13}$
then
$c \equiv a^2+b^2 \equiv 97 \equiv 6 \pmod{13}$
and hence $c=6$. Is my solution correct? More specifically, for $a^2$ and $b^2$ where I have multiplied the congruent relations of $a$ and $b$ by themselves, is that right?