(a) Show that sequence ${a_n} = \sqrt[n]{{{3^n} + {5^n}}}$ is monotone decreasing
Proof
Let ${a_n} = \sqrt[n]{{{3^n} + {5^n}}} = 5{\left[ {{{\left( {\frac{3}{5}} \right)}^n} + 1} \right]^{\frac{1}{n}}}$ then
${a_k} = 5{\left[ {{{\left( {\frac{3}{5}} \right)}^k} + 1} \right]^{\frac{1}{k}}}$
${a_{k + 1}} = 5{\left[ {{{\left( {\frac{3}{5}} \right)}^{k + 1}} + 1} \right]^{\frac{1}{{k + 1}}}}$
We Know ${\left( {\frac{3}{5}} \right)^k} \geqslant {\left( {\frac{3}{5}} \right)^{k + 1}}$
${\left( {\frac{3}{5}} \right)^k} + 1 \geqslant {\left( {\frac{3}{5}} \right)^{k + 1}} + 1$
${\left[ {{{\left( {\frac{3}{5}} \right)}^k} + 1} \right]^{\frac{1}{{k + 1}}}} \geqslant {\left[ {{{\left( {\frac{3}{5}} \right)}^{k + 1}} + 1} \right]^{\frac{1}{{k + 1}}}}$
${\left[ {{{\left( {\frac{3}{5}} \right)}^k} + 1} \right]^{\frac{1}{k}}} \geqslant {\left[ {{{\left( {\frac{3}{5}} \right)}^k} + 1} \right]^{\frac{1}{{k + 1}}}} \geqslant $ ${\left[ {{{\left( {\frac{3}{5}} \right)}^{k + 1}} + 1} \right]^{\frac{1}{{k + 1}}}}$
$5{\left[ {{{\left( {\frac{3}{5}} \right)}^k} + 1} \right]^{\frac{1}{k}}} \geqslant 5{\left
[{{{\left( {\frac{3}{5}} \right)}^{k + 1}} + 1} \right]^{\frac{1}{{k + 1}}}}$
${a_k} \geqslant {a_{k + 1}}$
So ${a_n} = \sqrt[n]{{{3^n} + {5^n}}} = 5{\left[ {{{\left( {\frac{3}{5}} \right)}^n} + 1} \right]^{\frac{1}{n}}}$ is monotone decreasing .
I not sure it True or False ,I hope someone help me thank.