I want to determine whether 3 functions are linearly independent:
\begin{align*} x_1(t) & = 3 \\ x_2(t) & = 3\sin^2(t) \\ x_3(t) & = 4\cos^2(t) \end{align*}
Definition of Linear Independence: $c_1x_1 + c_2x_2 + c_3x_3 = 0 \implies c_1=c_2=c_3=0$ (only the trivial solution)
So we have: \begin{align} 3c_1 + 3c_2\sin^2(t) + 4c_3\cos^2(t) = 0 \end{align}
My first idea is to differentiate both sides and get:
$6c_2\sin(t)\cos(t) - 8c_3\cos(t)\sin(t) = 0$
Then we can factor to get:
$\sin(t)\cos(t)(6c_2 - 8c_3) = 0$
So $c_3= \dfrac{6}{8}c_2$ gives the equation equals zero. Thus all $c$ are not $0$ and thus $x_1, x_2, x_3$ are linearly dependent.
Is this correct? Or is there a cleaner way to do this?