The expression $232^2-62^2\times14$ can be calculated directly ($53824-3844 \times14=8$). But is it possible to evaluate it for example by factoring or using identities?
Here is what I have tried, $$(58\times4)^2-62^2\times14=58^2\times16-62^2\times14=(60-2)^2(15+1)-(60+2)^2(15-1)$$ Or
$$58^2\times16-62^2\times14=29^2\times64-31^2\times56=(30-1)^2\times8^2-(30+1)^2(8\times7)$$ But I can't see an elegant way to get $8$ from either of the calculatins.