Prove that if $a$ is an element of a finite group $G$, then $ord(a)=ord(a^{-1})$.
So here's my proof, please let me know if I'm doing it right:
$ord(a)=n\implies a^n=e$
$e=a^n=a*a*a*...*a$
$e(a^{-1})^n=a*a*a*...*(a*a^{-1})*...*a^{-1}*a^{-1}*a^{-1}$
now the right side of the above equation is collapsing from the inside out
$(a^{-1})^n=e$
$\therefore ord(a)=n\implies a^n=e\implies (a^{-1})^n=e\implies ord(a^{-1})=n=ord(a)$
Does that look like a satisfactory proof, am I following the rules for groups?