Question:
$$\cot^{2}\frac{\pi }{2m+1}+\cot^{2}\frac{2\pi }{2m+1}+\cdots+\cot^{2}\frac{m\pi }{2m+1}=\frac{m(2m-1)}{3}$$ $m$ is a positive integer.
Attempt:
I started by showing that $$\sin(2m+1)\theta =\binom{2m+1}{1}\cos^{2m}\theta \sin\theta -\binom{2m+1}{3}\cos^{2m-2}\theta \sin^{3}\theta +\cdots+(-1)^{m}\sin^{2m+1}\theta$$ By expanding $\left(\text{cis }\theta\right)^{2m+1}$ and then equating the imaginary part.