I tried using the definition $$if \quad \lim_{n\to\infty} \mathcal X_n = \mathcal L \quad then \quad |\mathcal X_n - \mathcal L| < \varepsilon \qquad for\; every \; \varepsilon >0$$
How do I break down $\ n! $ to use this
I tried using the definition $$if \quad \lim_{n\to\infty} \mathcal X_n = \mathcal L \quad then \quad |\mathcal X_n - \mathcal L| < \varepsilon \qquad for\; every \; \varepsilon >0$$
How do I break down $\ n! $ to use this