1

Let $f : \mathbb R\to\mathbb R$ and $\ell\in\mathbb R$, and assume that, for every increasing sequence $(\omega_n)\in\mathbb R^\mathbb N$ such that $\lim_{n\to\infty}\omega_n= \infty$, one has $\lim_{n\to\infty} f(\omega_n) = \ell$. Is it necessarily true then, that $\lim_{x\to\infty} f(x) = \ell$ ?

KCJV
  • 186

0 Answers0