Determine the splitting field of $x^8 + 2$ over $\mathbb{F}_3$ and factor it into irreducible polynomials over $\mathbb{F}_3$ using cyclotomic cosets.
I'm having issues in factorizing this polynomial. can anyone see if I am worng with the computations or something else please?
My attempt: By a Lemma we had in the lecture:
Lemma: The splitting field $\mathbb{F}_{q^s}$ $\text{split}(f,\mathbb{F}_q)$, of $f=x^n-1$, is characterized through the smallest integer $s$ such that $n|q^s-1$.
Notice that over $\mathbb{F}_3$ we have $x^8+2\equiv x^8-1$. For $n=8$ and $q=3$, $n|3^2-1=8\Rightarrow \text{split}(x^8+2,\mathbb{F}_3)=\mathbb{F}_{3^2}=\mathbb{F}_9$. Consider that 2 is a root of $x^8-1$, i.e. $2^8-1=255\equiv 0\mod3$
Then I find the cyclotomic cosets $C_0=\{0\}$, $C_1=\{1,3\}$, $C_2=\{2,6\}$, $C_3=\{1,3\}=C_1$, $C_4=\{4\}$, $C_5=\{5,7\}$
So the factorization gives: $x^8-1=(x-2^0)\cdot(x-2^1)(x-2^3)\cdot(x-2^2)(x-2^6)\cdot(x-2^4)\cdot(x-2^5)(x-2^7)\equiv(x+2)(x^2+2x+1)(x^2+x+2)(x+2)(x^2+2x+1)$
But checking the L.H.S., this doesn't give $x^8-1$...