From the linked post we know that:
$$I=\int_0^1\frac{\operatorname{Li}_2\left(-x^2\right)}{\sqrt{1-x^2}} dx=\pi\int_0^1\frac{\ln y}{2y}\left(1-\frac{1}{\sqrt{1+y}}\right)dy$$
So we just need to integrate by parts. We have:
$$\int \frac{1}{2y}\left(1-\frac{1}{\sqrt{1+y}}\right)dy\overset{\sqrt{1+y}= u}=\int\frac{du}{1+u}=\ln(1+\sqrt{1+y})+C$$
However, if we would use the above when integrating by parts we would run into divergence issues as
$\lim\limits_{y\to 0} \, \ln y\, \ln(1+\sqrt{1+y})$ is not nice.
Therefore we will first substract $\ln 2$ from that and get $\lim\limits_{y\to 0} \, \ln y\, (\ln(1+\sqrt{1+y})-\ln 2)=0$.
$$\Rightarrow I=\pi\int_0^1 \ln y\,(\ln(1+\sqrt{1+y})-\ln 2)' dy\overset{IBP}=\pi\int_0^1\frac{\ln 2-\ln(1+\sqrt{1+y})}{y}dy$$