I'm trying to compute: $$\sum_{k=0}^{\infty} \frac{(-1)^{k} \Gamma\left(\frac{2k+n+m-1}{2}\right)}{k!} \, x^{2k}.$$
I thought of the expression of the binomial series $${\displaystyle (1+x)^{\alpha }=\sum _{n=0}^{\infty }{\binom {\alpha }{n}}x^{n}} \qquad (*)$$ where $${\displaystyle {\binom {\alpha }{n}}={\frac {\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}}} \quad (\text{the generalized binomial coefficients}).$$ i.e., \begin{align*} \sum_{k=0}^{\infty} \frac{(-1)^{k} \Gamma\left(\frac{2k+n+m-1}{2}\right)}{k!} \, x^{2k}&= \sum_{k=0}^{\infty} \Gamma\left(\frac{2k+n+m-1}{2}\right) \, \frac{(-x^{2})^k}{k!}\\ &= \sum_{k=0}^{\infty} \Gamma\left(k+\frac{n+m-1}{2}\right) \, \frac{(-x^{2})^k}{k!}. \end{align*} In other words: \begin{align*} \sum_{k=0}^{\infty} \Gamma\left(k+\alpha\right) \, \frac{t^k}{k!}=?? \end{align*} What do I have to do, in order to get to the expreesion $(*)$. Thank's