I am taking a course in linear algebra, and one of the questions is as follows (not a quote from the questions):
The matrix $A = \begin{bmatrix} 1 & 3 \\ 4 & 2\end{bmatrix}$ has eigenvalues $5$ and $-2$, this need not be proven. Find the rank of the matrix $xI - A = \begin{bmatrix} x-1 & -3 \\ -4 & x-2\end{bmatrix}$ for each real number $x$.
I have read other questions such as this one which use the rank-nullity theorem. However, this concept has not been introduced yet, which I assume means that it should not be used to solve the problem. Instead, I have only learnt of eigenvalues, eigenvectors, diagonalisation, as well as matrix algebra. The textbook that is being used is Linear Algebra with Applications by W. Keith Nicholson and is open source, available online here. This question is asked after having completed chapter 3.3 of the textbook.
I have tried manipulating $A$ into reduced row-echelon form, but I can't seem to be able to do this for all numbers $x$, and I don't quite understand the relationship between ranks and eigenvalues yet.