1

Let us say we have $X$ and $Y$ two independent random variables.
How can we show $Z = min(X, Y)$ or $Z=max(X, Y)$ mathematically to find the mean and pdf of $Z$?

Atif Ali
  • 159
  • 7

1 Answers1

3

This is the proceeding for $Z=\max(X,Y)$

$$F_Z(z)=\mathbb{P}[Z\le z]=\mathbb{P}[X\le z,Y\le z]=\dots\text{ using independence }\dots=\mathbb{P}[X\le z]\cdot\mathbb{P}[Y\le z]=F_X(z)\cdot F_Y(z)$$

can you do a similar reasoning for $U=\min(X,Y)$?

tommik
  • 32,733
  • 4
  • 15
  • 34