I have the following problem:
Suppose that $f,f_1,...,f_n,...\in L^1(\Omega)$ and $f_n\stackrel{a.e.}{\rightarrow}f$. Show that $$f_n\stackrel{L^1}{\rightarrow}f\Leftrightarrow ||f_n||_1\rightarrow ||f||_1$$If possible use the functions $g_n=|f|+|f_n|-|f_n-f|$.
Till now I have the following:
Proof
$\Rightarrow$ Let us assume that $f_n\stackrel{L^1}{\rightarrow}f\Leftrightarrow \lim_{n\rightarrow \infty}\int_\Omega |f_n-f|d\mu=0$. This is equivalent to say that $$\forall \epsilon >0 \,\,\exists N\in \mathbb{N}\,\,\,s.t.\,\,\,\forall n\geq N\,\,\,\int_\Omega |f_n-f|d\mu<\epsilon \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$$ Let $\epsilon >0$ satisfying (1), then $$\left|\int_\Omega |f_n|d\mu-\int_\Omega |f|d\mu\right|=\left|\int_\Omega |f_n|-|f|d\mu\right|\leq \int_\Omega \left|\left|f_n\right|-\left|f\right|\right|d\mu\leq \int_\Omega |f_n-f|d\mu<\epsilon$$ Therefore $\forall \epsilon >0 \,\,\exists N\in \mathbb{N}\,\,\,s.t.\,\,\,\forall n\geq N\,\,\,\left|{||f_n||_1-||f||_1}\right|<\epsilon$.
Is this correct until here?
$\Leftarrow$ I think that in this direction I need do use my $g_n$ but I don't see where.
If the first direction is correct could someone give me a hint for the second one?
Thank you.