I'm reading Theorem 6.19 in textbook Real Analysis: Modern Techniques and Their Applications by Gerald B. Folland. The proof given by the author is very sketchy. I also change the original statement of part (ii) to make it more concise.
Could you verify if my proof and my formulation of part (ii) are correct?
In part (ii), the case $\infty$ is obtained by the monotonicity of integral. Why don't we do the same for part (i)?
Let
$(X, \mathcal A, \mu)$ and $(Y, \mathcal B, \nu)$ be $\sigma$-finite measure spaces, and $(E, \| \cdot \|)$ a Banach space.
$\| \cdot \|_p$ is the $L_p$-norm.
$\lambda = \mu \otimes \nu$ the product measure of $\mu$ and $\nu$.
$f: X \times Y \to E$ is $\lambda$-measurable.
(i) If $1 \le p < \infty$ and $E = \mathbb R_+$, then $$\left[ \int_X \left( \int_Y f(x, y) \mathrm d \nu(y) \right )^{p} \mathrm d \mu(x) \right]^{1 / p} \leq \int_Y \left [ \int_X f^p (x, y) \mathrm d \mu(x) \right]^{1 / p} \mathrm d \nu(y).$$
(ii) If $1 \le p \le \infty$ and $f (x, \cdot)$ is $\nu$-integrable for $\mu$-a.e. $x \in X$, then $$\left [ \int_X \left \| \int_Y f(x, y) \mathrm d \nu(y)\right\|^{p} \mathrm d \mu(x)\right]^{1 / p} \leq \int_Y \left [ \int_X \|f(x, y)\|^{p} \mathrm d \mu(x) \right]^{1 / p} \mathrm d \nu(y).$$
Proof: We start with (i). Let $R$ be the RHS and $L'_q(X, \mu, \mathbb R_+) \triangleq \{g \in L_q(X, \mu, \mathbb R_+) \mid \|g\|_q = 1\}$. The case $p=1$ is true by Tonelli's theorem. For $p >1$, let $q$ be its Hölder's conjugate and $h:X \to \mathbb R, x \mapsto \int_Y f(x, y) \mathrm d \nu(y)$.
First, we consider a function $\varphi: L'_q(X, \mu, \mathbb R_+) \to \overline{\mathbb R}_+, \, g \mapsto \int_X h g \mathrm d \mu$. By Hölder's inequality, $$\sup_{g \in L'_q(X, \mu, \mathbb R_+)} \varphi(g) \le \sup_{g \in L'_q(X, \mu, \mathbb R_+)} \|h\|_p \cdot \|g\|_q = \|h\|_p.$$
Because $h$ is non-negative and measurable, there is a non-decreasing sequence $(h_n)$ of non-negative simple functions converging $\mu$-a.e. to $h$. We define a sequence $(g_n)$ by $$g_n \triangleq \frac{h^{p-1}_n}{\|h_n\|_p^{p-1}}, \quad n \in \mathbb N.$$
It follows from $(p-1)q = p$ that $\|g_n\|_q =1$ and $\|h_n\|_p = \int_X h_n g_n \mathrm d \mu$. This means $g_n \in L'_q(X, \mu, \mathbb R_+)$ for all $n$. As such, \begin{align} \|h\|_p &= \lim_n \|h_n\|_p &&= \lim_n \int_X h_n g_n \mathrm d \mu \\ &\le \lim_n \varphi (g_n) && \le \sup_{g \in L'_q(X, \mu, \mathbb R_+)} \varphi(g). \end{align}
It follows that $\sup_{g \in L'_q(X, \mu, \mathbb R_+)} \varphi(g) = \|h\|_p$. For all $g \in L'_0(X, \mu, \mathbb R_+)$, \begin{align} \varphi (g) =& \int_Y \left ( \int_X f(x, y) g(x) \mathrm d \mu (x) \right ) \mathrm d \nu (y) \quad \text{by Tonelli's theorem} \\ \le& \int_Y \left ( \int_X f^p(x, y) \mathrm d \mu (x) \right )^{1/p} \left ( \int_X g^q(x) \mathrm d \mu (x) \right )^{1/q} \mathrm d \nu (y) \quad \text{by Hölder's inequality} \\ =& R. \end{align} Hence $R$ is an upper bound of $\varphi$ and thus $\|h\|_p \le R$. This completes the proof of (i). Now we're going to prove (ii). First, we consider the case $1 \le p < \infty$. Let's denote the LHS by $L$. Notice that $\|f\|$ is non-negative and measurable. We have \begin{align} L &\le \left [ \int_X \left ( \int_Y \| f(x, y) \| \mathrm d \nu(y)\right )^{p} \mathrm d \mu(x)\right]^{1 / p} \quad \text{because} \quad \left \|\int f \right \|^p \le \left | \int \|f\| \right |^p = \left ( \int \|f\| \right )^p\\ &\le \int_Y \left [ \int_X \|f(x, y)\|^{p} \mathrm d \mu(x) \right]^{1 / p} \mathrm d \nu(y) \quad \text{by (i)}. \end{align}
The case $p =\infty$ is then obtained by the monotonicity of integral.