Too long for a comment.
If we consider the problem of
$$I_n=\int \frac{t^n}{\sqrt{e^t-1}}dt$$ for $n>1$ they all write as
$$I_n=-2 t^n \sin ^{-1}\left(e^{-t/2}\right)-4ne^{-t/2} J_n$$ where $J_n$ are expressed in terms of generalized hypergeometric functions.
For example
$$J_2=t \,
_3F_2\left(\frac{1}{2},\frac{1}{2},\frac{1}{2};\frac{3}{2},\frac{3}{2};e^{-t}
\right)+2 \,
_4F_3\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2};\frac{3}{2},\frac{3}{
2},\frac{3}{2};e^{-t}\right)$$
$$J_3=t^2 \,
_3F_2\left(\frac{1}{2},\frac{1}{2},\frac{1}{2};\frac{3}{2},\frac{3}{2};e^{-t}
\right)+4 t \,
_4F_3\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2};\frac{3}{2},\frac{3}{
2},\frac{3}{2};e^{-t}\right)+$$ $$8 \,
_5F_4\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2};\frac{3}{
2},\frac{3}{2},\frac{3}{2},\frac{3}{2};e^{-t}\right)$$
$$J_4=t^3 \,
_3F_2\left(\frac{1}{2},\frac{1}{2},\frac{1}{2};\frac{3}{2},\frac{3}{2};e^{-t}
\right)+6 t^2 \,
_4F_3\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2};\frac{3}{2},\frac{3}{
2},\frac{3}{2};e^{-t}\right)+$$ $$24 t \,
_5F_4\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2};\frac{3}{
2},\frac{3}{2},\frac{3}{2},\frac{3}{2};e^{-t}\right)+48 \,
_6F_5\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{
2};\frac{3}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2},\frac{3}{2};e^{-t}\right)$$
where we can notice simple patterns.
Now, for the definite integrals
$$K_n=\frac 1 \pi\int_0^\infty \frac{t^n}{\sqrt{e^t-1}}dt$$ the term $2 t^n \sin ^{-1}\left(e^{-t/2}\right)$ disappears and we have for the first ones
$$K_2=\frac{\pi ^2}{3}+4 \log ^2(2)$$
$$K_3=2 \pi ^2 \log (2)+8 \log ^3(2)+12 \zeta (3)$$
$$K_4=8 \pi ^2 \log ^2(2) +16 \log ^4(2)+96 \zeta (3) \log (2)+114 \zeta(4) $$