More technically, you can't do like that(why?)
Since you are not given that $f$ is differentiable(except at $0$), therefore you can't take derivatives on both sides. So, first you need to check if $f$ is differentiable and in that process, you'll get $f'(x)$( if $f$ comes out to be differentiable on some non-empty set of $\Bbb R$)
Note, $f(0+0)=f(0)f(0)\implies f(0)=0,1$ but $f(x)\neq 0$ for any $x\in \Bbb R\implies f(0)=1$
Then, $1=f(0)=f(x-x)=f(x).f(-x)\implies f(-x)=\frac{1}{f(x)}$
Now,
$$R.H.D.=\lim_{h\to 0^+}\frac{f(x+h)-f(x)}{h}=\lim_{h\to 0^+}\frac{f(x)f(h)-f(x)}{h}$$ $$=f(x)\lim_{h\to 0^+}\frac{f(h)-1}{h}\tag{1}$$
similarly, $$L.H.D.=\lim_{h\to 0^+}\frac{f(x)-f(x-h)}{h}=\lim_{h\to 0^+}\frac{f(x)-f(x)f(-h)}{h}$$ $$=f(x)\lim_{h\to 0^+}\frac{1-\frac{1}{f(h)}}{h}=f(x)\left(\lim_{h\to 0^+}\frac{f(h)-1}{h}\right)\left(\lim_{h\to 0^+}\frac{1}{f(h)}\right)=f(x)\lim_{h\to 0^+}\frac{f(h)-1}{h}\tag{2}$$
From $(1)$ and $(2)$, $L.H.D.=R.H.D.\implies f$ is differential.
Then, $$f'(x)=f(x)\lim_{h\to 0^+}\frac{f(h)-1}{h}$$
Since, $2=f'(0)=\lim_{h\to 0^+}\frac{f(h)-f(0)}{h}=\lim_{h\to 0^+}\frac{f(h)-1}{h}$
Therefore, $$f'(x)=2f(x)\tag{QED}$$
\cdot
. – kahen Jun 25 '13 at 13:14