Let $\{x_{ij}\}$ be a finite set of nonnegative integer variables, with $i = 1..m$ and $j = 1..n$. Let $a_{ij}, \xi_i, \eta_j \geq 0$. Here $\xi_i , \eta_j$ are integers, but $a_{ij}$ can be a real number.
Simplify the following sum:
- $$ \sum_{\{x_{ij}|\forall_i \sum_j x_{ij} = \xi_i, \forall_j \sum_i x_{ij} = \eta_j \}} \prod_{ij} \frac{a_{ij}^{x_{ij}}}{x_{ij}!} $$
That is, the sum goes over all values of the variables $\{x_{ij}\}$ constrained by $\sum_j x_{ij} = \xi_i$ for all $i = 1..m$, and $\sum_i x_{ij} = \eta_j$ for all $j = 1..n$. In other words, the matrix with entries $x_{ij}$ has constrained sums of rows and columns. (See here and here)
By simplifying, I mean find an equivalent expression that that is easier to compute. For example, by the multinomial theorem,
$$ \sum_{\{x_{ij}|\forall_i \sum_j x_{ij} = \xi_i\}} \prod_{ij} \frac{a_{ij}^{x_{ij}}}{x_{ij}!} = \sum_i \frac{1}{\xi_i!} \left(\sum_j a_{ij}\right)^{\xi_i} $$
However in (1.) the sum has two constraints, $\sum_j x_{ij} = \xi_i$ and $\sum_i x_{ij} = \eta_j$, so the multinomial theorem cannot be directly applied. I am looking for a similar simplification of (1.).
Any suggestions are appreciated.