Latest Edit
The closed form for $$I_n= \frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{d x}{\sin ^{2n} x+\cos ^{2n} x} $$ is
$$ \boxed{I_{n}=\frac{\pi^2}{8 n} \sum_{k=0}^{n-1}\left(\begin{array}{c} n-1 \\ k \end{array}\right) \csc \frac{(2 k+1) \pi}{2 n}} $$
Proof:
Letting $t\mapsto \tan x$ yields $$ \begin{aligned} \int_{0}^{\infty} \frac{\left(1+t^{2}\right)^{n-1}}{t^{2 n}+1}dt &=\sum_{k=0}^{n-1}\left(\begin{array}{c} n-1 \\ k \end{array}\right) \int_{0}^{\infty} \frac{t^{2 k}}{t^{2 n}+1} d t . \end{aligned} $$
By my post, $$\int_{0}^{\infty} \frac{x^{r}}{x^{m}+1} d x=\frac{\pi}{m} \csc \frac{(r+1) \pi}{m},$$
We can now get its closed form: $$ \boxed{I_{n}=\frac{\pi^2}{8 n} \sum_{k=0}^{n-1}\left(\begin{array}{c} n-1 \\ k \end{array}\right) \csc \frac{(2 k+1) \pi}{2 n}} $$
Original version
As the integral is not so difficult for $n=1,2,3$, I just show how to find the exact value of the integral when $n=4.$ $$ I:=\int_{0}^{\frac{\pi}{2}} \frac{x}{\sin ^{8} x+\cos ^{8} x} d x ,$$
I changed the integral, as usual, by letting $x\mapsto \frac{\pi}{2} -x$, $$I= \frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{d x}{\sin ^{8} x+\cos ^{8} x} $$ Then multiplying both numerator and denominator by $\sec^8x$ and letting $t=\tan x $ yields $$ I=\frac{\pi}{4} \int_{0}^{\infty} \frac{\left(1+t^{2}\right)^{3}}{t^{8}+1} d t $$ I was then stuck by the powers and start to think how to reduce them. Thinking for couple of days, I found a way to solve it with partial fractions only. Now I am going to share it with you.
Observing that $$ \int_{0}^{\infty} \frac{d t}{t^{8}+1}\stackrel{t\mapsto\frac{1}{t}}{=} \int_{0}^{\infty} \frac{t^{6}}{t^{8}+1} d t$$ and
$$ \int_{0}^{\infty} \frac{t^2d t}{t^{8}+1}\stackrel{t\mapsto\frac{1}{t}}{=} \int_{0}^{\infty} \frac{t^{4}}{t^{8}+1} d t,$$ we can reduce the power of the numerator to 2 that $$ I=\frac{\pi}{2} \underbrace{\int_{0}^{\infty} \frac{1+3 t^{2}}{t^{8}+1} d t}_{J} $$ To handle the power 8 in the denominator, we resolve the integrand into partial fractions. $$ J=\frac{1}{2 \sqrt{2}} \left[\underbrace{\int_{0}^{\infty} \frac{t^{2}-(3-\sqrt{2})}{t^{4}+\sqrt{2} t^{2}+1} d t}_{K}-\underbrace{\int_{0}^{\infty} \frac{t^{2}-(3+\sqrt{2})}{t^{4}-\sqrt{2} t^{2}+1} d t}_{L} \right] $$ To deal with $K$ and $L$, we play a little trick. $$ \begin{aligned} K &=\int_{0}^{\infty} \frac{1-\frac{3-\sqrt{2}}{t^{2}}}{t^{2}+\frac{1}{t^{2}}+\sqrt{2}} d t \\ &=\int_{0}^{\infty} \frac{\frac{\sqrt{2}-2}{2}\left(1+\frac{1}{t^{2}}\right)+\frac{4-\sqrt{2}}{2}\left(1-\frac{1}{t^{2}}\right)}{t^{2}+\frac{1}{t^{2}}+\sqrt{2}} d t \\ &=\frac{\sqrt{2}-2}{2} \int_{0}^{\infty} \frac{d\left(t-\frac{1}{t}\right)}{\left(t-\frac{1}{t}\right)^{2}+(2+\sqrt{2})}+\frac{4-\sqrt{2}}{2} \int_{0}^{\infty} \frac{d\left(t+\frac{1}{t}\right)}{\left(t+\frac{1}{t}\right)^{2}-(2 -\sqrt{2})}\\ &=\frac{\sqrt{2}-2}{2 \sqrt{\sqrt{2}+2}}\left[\tan ^{-1}\left(\frac{t-\frac{1}{t}}{\sqrt{\sqrt{2}+2}}\right)\right]_{0}^{\infty}+0 \\ &=\frac{(\sqrt{2}-2) \pi}{2 \sqrt{\sqrt{2}+2}} \end{aligned} $$ Similarly, $$ \begin{aligned} L &=-\frac{2+\sqrt{2}}{2} \int_{0}^{\infty} \frac{d\left(t-\frac{1}{t}\right)}{\left(t-\frac{1}{t}\right)^{2}+(2-\sqrt{2})} =-\frac{(2+\sqrt{2}) \pi}{2 \sqrt{2-\sqrt{2}}} \end{aligned} $$ $$ \therefore J=\frac{1}{\sqrt{2}}\left[\frac{(\sqrt{2}-2) \pi}{2 \sqrt{\sqrt{2}+2}}+\frac{(2+\sqrt{2}) \pi}{2 \sqrt{2-\sqrt{2}}}\right] =\frac{\pi}{4} \sqrt{10-\sqrt{2}}$$ Hence we can conclude that
$$\boxed{I=\frac{\pi^{2}}{8} \sqrt{10-\sqrt{2}}}$$
How about when $n\geq 5$, $$ \int_{0}^{\frac{\pi}{2}} \frac{x}{\sin ^{2n} x+\cos ^{2n} x} d x ?$$
Would you please help me?