Let’s find an integral representation using @John Barber’s technique in this question. Now appears the digamma function:
\begin{align*}\sum_1^\infty \frac{\ln(n)}{n!} &=\int_1^\infty\lfloor x \rfloor \frac d{dx} \frac{\ln(x)}{x!}dx\\
&=\int_1^\infty \lfloor x\rfloor \left(\frac1{xx!}-\frac{\ln(x)ψ(x+1)}{x!}\right)dx\\
&= \int_1^\infty \frac{\lfloor x\rfloor}{xx!}dx -\int_1^\infty\frac{\lfloor x\rfloor\ln(x)ψ(x+1)}{x!}dx\\
&=-0.603782862791487988416183810982450548304170153164991021772413211382272284100525569478213750246…\end{align*}
Here is proof of the result.
Here is a visual representation of the constant. Here is an interactive graph too:

The “closed” form is nothing more than the $\text A306243$ constant unrelated to the above technique
equal to
$$\ln(\exp(1/2*\ln(2*\exp(1/3*\ln(3*\exp(1/4*\ln(4*\exp(...))))))))$$
Please correct me and give me feedback!