I know that the area of a triangle is $\frac{1}{2}bh$ but today I learnt that to computing the area of a triangle using coordinates: $$ \text { Area of } \triangle A B C=\left|\frac{1}{2} \left| \begin{array}{lll} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{array}\right|\right|=\frac{1}{2}\left|\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right| $$
I came to know that this $\left|\frac{1}{2} \left| \begin{array}{lll} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{array}\right|\right|$ is called matrix. How did we get this matrix $\left|\frac{1}{2} \left| \begin{array}{lll} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{array}\right|\right|$? I am not able to understand this.