Let $(A_m^{(n)})$ be a sequence of sets indexed by $m$ and $n$. Let $$\Delta \triangleq \bigcap_{n=1}^N \bigcup_{m=1}^\infty A_m^{(n)}.$$
From the identity $(a+b)(c+d) = ac+ad+bc+cd$, I guess $\Delta$ can be written as a countable union, i.e., $$\Lambda = \bigcup_{k \in \mathbb N^N} \bigcap_{n=1}^N A_{k_n}^{(n)},$$ where $k_n$ is the $n$-th coordinate of the multi-index $k \in \mathbb N^N$.
I would like to ask if my proof is correct and if below statement is correct, i.e.,
Countable intersection of countable unions can be written as countable union of countable intersections.
Of course, if $N = \mathbb N$, then $\mathbb N^N$ is uncountable.
Proof: For $x \in \Delta$, $x \in \bigcup_{m=1}^\infty A_m^{(n)}$ for all $n$. Then for each $n$, there is some $k_n$ such that $x \in A_{k_n}^{(n)}$. Hence $x \in \bigcap_{n=1}^N A_{k_n}^{(n)}$ and thus $x \in \Lambda$.
For $x \in \Lambda$, $x \in \bigcap_{n=1}^N A_{k_n}^{(n)}$ for some $k = (k_1, \ldots,k_N) \in \mathbb N^N$. Then $x \in A_{k_n}^{(n)}$ for all $n$. Hence $ x \in \bigcup_{m=1}^\infty A_m^{(n)}$ for all $n$ and thus $x \in \Delta$.