Here is the problem :
Eliminate $\varphi$ from the equations
$$a^2y\sin \varphi+b^2x\cos\varphi+ab(a^2\sin^2\varphi+b^2\cos^2\varphi)=0$$
$$ax\sec\varphi-by\csc\varphi=a^2-b^2$$
I am stumped for a plan of attack. The only idea I have is the substitution,
$$\sin\varphi=\frac{2t}{1+t^2}$$ $$\cos\varphi=\frac{1-t^2}{1+t^2}$$
but this leads to two fourth degree equations, and I am unsure how then to proceed. I want to keep the algebra to a manageable form.
The question occurs in Hobson, Treatise on Plane Trigonometry, pg.97 What is the solution intended for this question ?
Update:
the equations reduce to
$$(a^3\sin^2\varphi+b^3\cos^2\varphi)x+a^2(ab^2-a^2+b^2)\sin^2\varphi\cos\varphi+ab^4\cos^3\varphi=0$$ $$(a^3\sin^2\varphi+b^3\cos^2\varphi)y +a^4b\sin^3\varphi+b^2(a^2b+a^2-b^2)\sin\varphi\cos^2\varphi=0$$
OK so where is the miracle ?
$$\csc\varphi(a^4\sin^2 \varphi+b^4\cos^2\varphi )\frac{y}{b} +a^4\sin^2\varphi-b^4\cos^2\varphi+2a^2b^2\cos^2\varphi=0$$
– Rene Schipperus Oct 22 '21 at 20:13