If $n$ is an integer $\geqslant3,$ and $S$ is the sequence
$0,1,2,\ldots,n-3,n-1,$ then the base $n$ expansion of the fraction
$1/(n-1)^2$ is $(.\overline{S})_n,$ because:
\begin{align*}
(n-1)^2(.\overline{S})_n &=
(n-1)^2\left(\frac1{n^2}+\frac2{n^3}+\cdots+\frac{n-3}{n^{n-2}}+
\frac{n-1}{n^{n-1}}\right)
\left(1+\frac1{n^{n-1}}+\frac1{n^{2n-2}}+\cdots\right) \\ &=
(n-1)\left(\frac1n+\frac1{n^2}+\cdots+\frac1{n^{n-3}}+
\frac2{n^{n-2}}-\frac{n-1}{n^{n-1}}\right)
\left(1-\frac1{n^{n-1}}\right)^{-1} \\ &=
(n-1)\left(\frac1n+\frac1{n^2}+\cdots+\frac1{n^{n-3}}+
\frac{n+1}{n^{n-1}}\right)
\left(\frac{n^{n-1}}{n^{n-1}-1}\right) \\ &=
\left(1-\frac1{n^{n-3}}+\frac{n^2-1}{n^{n-1}}\right)
\left(\frac{n^{n-1}}{n^{n-1}-1}\right) \\ &=
\frac{n^{n-1}-n^2+n^2-1}{n^{n-1}-1} \\ &= 1.
\end{align*}
Taking $n=100,$ we get:
$$
1/9801 =
(.\overline{00,01,02,\ldots,97,99})_{100} =
.\overline{00010203\ldots95969799},
$$
so $1/9801$ has period 198 in base $10.$
[But see my comment on the meaning of the word "period" in the question.]