The problem is to establish the triangle inequality in the extended complex plane $C_\infty$ for the following function:
$d(z,z')=\frac{2|z-z'|}{\sqrt{(1+|z|^2)(1+|z'|^2)}}$; $d(z,\infty)=d(\infty,z)=\frac{2}{\sqrt{(1+|z|^2)}}$; $d(\infty,\infty)=0$.
To prove this I start by letting $x,y,z\in C$. We wish to prove $d(x,y)\le d(x,z)+d(y,z)$. The right hand side of the triangle inequality is now
$$\frac{2|x-z|}{\sqrt{(1+|x|^2)(1+|z|^2)}}+\frac{2|y-z|}{\sqrt{(1+|y|^2)(1+|z|^2)}}$$ which is at least
$$\frac{2(|x-z|+|y-z|)}{\sqrt{(1+|x|^2)(1+|y|^2)(1+|z|^2)}}$$
What to do next?