If $p=2^h+1$ and $e$ is the least exponent such that $2^e\equiv 1\pmod{p}$ then $2^h=p-1<p$; $2^e>p$, so $h<e$. We have $2^{2^h}\equiv2^{p-1}\equiv1\pmod{p}$ and $2^h= p-1\equiv -1\pmod{p}$ and if $g<h$, $2^g\not\equiv-1\pmod{p}$ since $p\nmid2^g+1<p$. Now $2^e\cdot2^h=2^{e+h}\equiv-1\pmod{p}$ and $2^{e-h}\equiv-1\pmod{p}$, but $e-h\not< h$, $e-h\ge h$ or $e\ge 2h$. Squaring $(2^h)^2=2^{2h}\equiv1\pmod{p}$, which since $e\ge2h$ implies $e=2h$. Now $e\mid p-1=2^h=2^{e/2}$. Therefore $e=2^{a+1}$ so $p=2^{2^a}+1$, i.e., $h=2^a$, as desired.
In another direction, if $h$ is divisible by an odd number, say $h=h'(2n+1)$, then $2^{h'}+1\mid 2^h+1$ so $2^h+1$ cannot be prime in this case.