I have the following question.
Let $E$ be a Banach space and separable, then exists an isometry form $E$ in $\ell^{\infty}$.
The hint is: Consider Since $K = B_{E^{\star}}$ is compac and metrizable in $\sigma(E^{\star},E)$ there is a countable subset $(t_n)$ in $K$. Consider $S: E \to \ell^{\infty}$ difinded by $$ Sx = ( t_1(x), t_2(x),\dots,t_n(x),\dots ). $$
My attempt. How $\{t_n\}_{n=1}^{\infty} \subset K$, then $\|t_{n}\| \leq 1$ for all $n \in \mathbb{N}$, so $|t_{n}x|\leq \|x\|$ it´s $Sx \in \ell ^{\infty}$ and $\|Sx\|_{\ell^{\infty}}\leq \|x\|$. How can i prove $\|x\| \leq \|Sx\|_{\ell^{\infty}}$?
Could this work? Isometric Embedding of a separable Banach Space into $\ell^{\infty}$.
Thanks.