I have to solve the determinant $\det(\mathbb{I}+\vec{b}\vec{b}^T)$. (The result shloud be 1.)
We can use the sum rule for rows to get.
$$\det(\mathbb{I}+\vec{b}\vec{b}^T)= \begin{vmatrix} 1 & 0 & \ldots& 0\\ b_1 b_2 & & & \\ \vdots & & (\mathbb{I}+\vec{b}\vec{b}^T)_{(2\ldots n)\times (2\ldots n)} &\\ b_1 b_n & & & \end{vmatrix} + \begin{vmatrix} b_1^2 & b_2 b_1 & \ldots& b_n b_1\\ b_1 b_2 & & & \\ \vdots & & (\mathbb{I}+\vec{b}\vec{b}^T)_{(2\ldots n)\times (2\ldots n)} &\\ b_1 b_n & & & \end{vmatrix}=:\det(A)+\det(B),$$ where $(\mathbb{I}+\vec{b}\vec{b}^T)_{(2\ldots n)\times (2\ldots n)}$ is the submatrix with the first row and column deleted. Using the Laplace decomposition formula on $\det (A)$, we have the same problem with reduced dimension, so $\det(A)=1$ by induction, if $\det(B)=0.$
So we have to show that $\det(B)=0.$ Using the sum rule again, we have $$\det(B)=\begin{vmatrix} b_1^2 & b_2 b_1 & b_3 b_1& \ldots& b_n b_1\\ b_1 b_2 & 1 &0 & \ldots& 0\\ b_1 b_3&b_2 b_3&&\\ \vdots & \vdots & & (\mathbb{I}+\vec{b}\vec{b}^T)_{(3\ldots n)\times (3\ldots n)} &\\ b_1 b_n & b_2 b_n & & \end{vmatrix}+\begin{vmatrix} b_1^2 & b_2 b_1 & b_3 b_1& \ldots& b_n b_1\\ b_1 b_2 & b_2^2 &0 & \ldots& 0\\ b_1 b_3&b_2 b_3&&\\ \vdots & \vdots & & (\mathbb{I}+\vec{b}\vec{b}^T)_{(3\ldots n)\times (3\ldots n)} &\\ b_1 b_n & b_2 b_n & & \end{vmatrix}$$ It is clear that the second term is zero, as the first two columns are linearly dependent (multiples of each other). But I do not see why the first term should vanish.
Did I make a mistake or is the first term in the second equation vanishing?