Let $ \ x_{1},x_{2},...,x_{n}$ a random sample with density $$f(x;\theta) = e^{-(x-\theta)} e^{-e^{-(x-\theta)}}$$ where $\theta \in \mathbb R$
What is the distribution of $T=\sum_{i=1}^{n} e^{-x_{i} }$
I try this way:
$m_{T}(t)=E(e^{tT})=E(e^{t\sum_{i=1}^{n} e^{-x_{i} }})=E(\prod_{i=1}^{n} e^{te^{-x_{i}}})= \prod_{i=1}^{n} E(e^{te^{-x_{i}}})= \prod _{i=1}^{n} m_{e^{-x_{i}}}(t)$
And then $m_{e^{-x}}(t)=E(e^{te^{-x}})= \int e^{te^{-x}} \left( e^{-(x-\theta)} e^{-e^{-(x-\theta)}} \right) dx$
I don´t sure what is the support.