Mathematical Logic by Kleene page 107
As I understand for one variable $\forall x.A(x)$ it means that instead of considering all possible logical functions for $A(x)$ we need to choose only the function $I(x)=true$ for all values of $x$.
$A_1,...,A_m\models^{x_1...x_q}B \equiv \forall {x_1,...,x_q}.A_1,...\forall {x_1,...,x_q}.A_m \models B$ - if I got it right.
I see no difference between $\forall{x,y}.A(x,y)$ and $\forall{x}.A(x,y)$ because logical function $I(x,y)$ for $\forall{x}.A(x,y)$ always $true$ regardless of $y$ and the same holds for $\forall{x,y}.A(x,y)$
I can't get the difference between $A_1,...,A_m\models^{x_1...x_q}B$ and $A_1,...,A_m\models^{x_1...x_qx_{q+1}...x_r}B$