Let $\mathbf{X}$ be a vector of random variables:
$$\mathbf{X}=(X_1, X_2, ... , X_D)^{\mathrm T}.$$
Then the covariance matrix of $\mathbf{X}$ is defined
$$ \operatorname{K}_{\mathbf{X}\mathbf{X}} =
\begin{bmatrix}
\mathrm{E}[(X_1 - \operatorname{E}[X_1])(X_1 - \operatorname{E}[X_1])] & \cdots & \mathrm{E}[(X_1 - \operatorname{E}[X_1])(X_D - \operatorname{E}[X_D])] \\ \\
\vdots & \ddots & \vdots \\ \\
\mathrm{E}[(X_D - \operatorname{E}[X_D])(X_1 - \operatorname{E}[X_1])] & \cdots & \mathrm{E}[(X_D - \operatorname{E}[X_D])(X_D - \operatorname{E}[X_D])]
\end{bmatrix}.$$
or
$$ \operatorname{K}_{\mathbf{X}\mathbf{X}} = \operatorname{E}[(\mathbf{X}-\mathbf{\mu_X})(\mathbf{X}-\mathbf{\mu_X})^{\rm T}],$$
where $\mathbf{\mu_X} = \operatorname{E}[\mathbf{X}]$.
Notice that this is a definition involving random variables. In your example, your $x_n \in \mathbb{R}^D$ are real numbers sampled from random variable $\mathbf{X}$. The equation you provided is a way to estimate $\operatorname{K}_{\mathbf{X}\mathbf{X}}$ using samples $x_1, \cdots, x_N$.
I assume your $\bar{x}$ is the mean of your samples, defined
$$ \bar{x} = \sum_{n=1}^N x_n.$$
Then notice that each $(x_n - \bar{x})(x_n - \bar{x})^T$ is actually a matrix in $\mathbb{R}^{D \times D}$, since the transpose is on the second term. So you have dimension $(D \times 1)$ times dimension $(1 \times D)$ is dimension $(D \times D)$. The expression
$$ S_N = \frac{1}{N} \sum_{n=1}^N (x_n - \bar{x})(x_n - \bar{x})^{\rm T}, $$
is a Monte Carlo method to approximate $\operatorname{K}_{\mathbf{X}\mathbf{X}}$. In other words, a way to estimate the true covariance matrix using data. Notice the similarity to $\operatorname{K}_{\mathbf{X}\mathbf{X}} = \operatorname{E}[(\mathbf{X}-\mathbf{\mu_X})(\mathbf{X}-\mathbf{\mu_X})^{\rm T}].$ If your samples are independently sampled, you get the property
$$ \lim_{N \rightarrow \infty} S_N = \operatorname{K}_{\mathbf{X}\mathbf{X}}.$$
Check out these for further details.
https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Monte_Carlo_method