I am aware that using the counting measure on Lebesgue you can get important results. I am wondering if there is a way to exchange the limits using Dominated Convergence Theorem.
Let $a_{n,m}$ be indexed from 0 to infinity. $|a_{n,m}|<M$ for all indexes. $\lim_{m\to \infty} a_{n,m}$ exists for all m.
Does DCT allow you do say $\lim_{n \to \infty} \lim_{m \to \infty} a_{n,m} = \lim_{m \to \infty} \lim_{n \to \infty} a_{n,m}$