One way is to notice that
if $n > 2a$ then
$\dfrac{a}{n} < \dfrac12$.
Then,
if $n > 2a$
and $m = \lfloor 2a\rfloor$,
$\begin{array}\\
\dfrac{a^n}{n!}
&=\dfrac{\prod_{k=1}^n a}{\prod_{k=1}^n k}\\
&=\dfrac{\prod_{k=1}^m a\prod_{k=m+1}^n a}{\prod_{k=1}^m k\prod_{k=m+1}^n k}\\
&=\dfrac{\prod_{k=1}^m a}{\prod_{k=1}^m k}\dfrac{\prod_{k=m+1}^n a}{\prod_{k=m+1}^n k}\\
&=\prod_{k=1}^m \dfrac{a}{k}\prod_{k=m+1}^n \dfrac{a}{k}\\
&<\dfrac{a^m}{m!}\prod_{k=m+1}^n \dfrac12\\
&=\dfrac{a^m}{m!}\dfrac1{2^{n-m}}\\
&=\dfrac{2^ma^m}{m!}\dfrac1{2^{n}}\\
\end{array}
$
For fixed $a$
(and thus $m$),
if we choose $n$ large enough so that
$\dfrac{2^ma^m}{m!}\dfrac1{2^{n}}
\lt \epsilon$,
then
$\dfrac{a^n}{n!}
\lt \epsilon$.