2

Let $f:(-a,a)\rightarrow \mathbb{R}$, with $a>0$. If $f$ is continuous in $0$ and the limit

$$\lim_{x\rightarrow 0} \frac{f(x)-f(cx)}{x}$$

exists and is real, $0<c<1$, prove $f$ is differentiable at $0$.

My idea was this:

$f$ is continuous in $0 \Rightarrow$ $\lim_{x\rightarrow 0} f(x)=f(0)$.

$\lim_{x\rightarrow 0}$ $\frac{f(x)-f(cx)}{x}=b$

$\lim_{x\rightarrow 0}$ $\frac{f(cx)-f(x)}{x}=-b$

$c=0+c$

$\lim_{x\rightarrow 0}$ $\frac{f(cx+0)-f(x)}{x}=-b$

$\lim_{x\rightarrow 0}$ $\frac{f(c0+0)-f(0)}{x}=-b$

This is similar enough to

$f'(0)=\lim_{h\rightarrow 0}$ $\frac{f(h+0)-f(0)}{h}$

So it is valid that $f$ is differentiable at $0$. If not what did I go wrong with the argument?

Zhanxiong
  • 14,040

0 Answers0