Let $f:(-a,a)\rightarrow \mathbb{R}$, with $a>0$. If $f$ is continuous in $0$ and the limit
$$\lim_{x\rightarrow 0} \frac{f(x)-f(cx)}{x}$$
exists and is real, $0<c<1$, prove $f$ is differentiable at $0$.
My idea was this:
$f$ is continuous in $0 \Rightarrow$ $\lim_{x\rightarrow 0} f(x)=f(0)$.
$\lim_{x\rightarrow 0}$ $\frac{f(x)-f(cx)}{x}=b$
$\lim_{x\rightarrow 0}$ $\frac{f(cx)-f(x)}{x}=-b$
$c=0+c$
$\lim_{x\rightarrow 0}$ $\frac{f(cx+0)-f(x)}{x}=-b$
$\lim_{x\rightarrow 0}$ $\frac{f(c0+0)-f(0)}{x}=-b$
This is similar enough to
$f'(0)=\lim_{h\rightarrow 0}$ $\frac{f(h+0)-f(0)}{h}$
So it is valid that $f$ is differentiable at $0$. If not what did I go wrong with the argument?