-2

So in the given question, we have to evaluate the given integral which is $\int\limits_0^1 \ln(x!) dx$

My initial thought is to simplify factorial x inside logarithmic function.

$\implies\int\limits_0^1 \ln((x) \cdot(x-1)\cdot(x-2) \cdot\cdot\cdot 3\cdot 2\cdot 1) dx$

$\implies\int\limits_0^1 \ln(x) + \ln(x-1) +\ln(x-2) +...+\ln(2) + \ln(1)dx$

$\implies\int\limits_0^1 \ln(x) dx+ \int\limits_0^1\ln(x-1) dx+\int\limits_0^1\ln(x-2) dx+...+\int\limits_0^1\ln(2)dx + \int\limits_0^1\ln(1)dx$

Does this make any sense?


The another method which I thought:

$\int\limits_0^1 \ln(x!) dx = \int\limits_0^1 \ln(\Gamma(x+1)) dx$

or

$\int\limits_0^1 \ln(x!) dx = \int\limits_0^1 \ln(\int\limits_0^\infty t^x\cdot e^{-t} dt) dx$

  • Can I proceed in any of the two methods which I used?
  • Is there any easier/different method to solve it?

1 Answers1

1

Hint 0. $$\Gamma(x+1) = x\Gamma(x)$$

Hint 1. $$I = \int_0^1 \ln\Gamma(x+1)dx = \underbrace{\int_0^1\ln(x)dx}_{I_1} + \underbrace{\int_0^1\ln\Gamma(x) dx}_{I_2}$$

Hint 2. $$I_2 = \int_0^1\ln\Gamma(x) dx = \int_0^1\ln\Gamma(1- x) dx \\ 2I_2 = I_2+I_2 = \int_0^1\ln\Gamma(x) dx + \int_0^1\ln\Gamma(1- x) dx = \int_0^1\ln\Gamma(x)\Gamma(1-x) dx$$

Hint 3. $$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}$$

Hint 4. Putting all together, you will have to know how to solve a classical integral $\int_0^\pi \ln\sin x dx$

VIVID
  • 11,604