So in the given question, we have to evaluate the given integral which is $\int\limits_0^1 \ln(x!) dx$
My initial thought is to simplify factorial x inside logarithmic function.
$\implies\int\limits_0^1 \ln((x) \cdot(x-1)\cdot(x-2) \cdot\cdot\cdot 3\cdot 2\cdot 1) dx$
$\implies\int\limits_0^1 \ln(x) + \ln(x-1) +\ln(x-2) +...+\ln(2) + \ln(1)dx$
$\implies\int\limits_0^1 \ln(x) dx+ \int\limits_0^1\ln(x-1) dx+\int\limits_0^1\ln(x-2) dx+...+\int\limits_0^1\ln(2)dx + \int\limits_0^1\ln(1)dx$
Does this make any sense?
The another method which I thought:
$\int\limits_0^1 \ln(x!) dx = \int\limits_0^1 \ln(\Gamma(x+1)) dx$
or
$\int\limits_0^1 \ln(x!) dx = \int\limits_0^1 \ln(\int\limits_0^\infty t^x\cdot e^{-t} dt) dx$
- Can I proceed in any of the two methods which I used?
- Is there any easier/different method to solve it?