I want to rewrite $(1-i)^ \frac 1 3$ using de Moivre's formula.
I defined $z := 1 - i$, then $r_z = \sqrt{2}$ and
$1 = \sqrt2\cos\theta$ and $-1 = \sqrt2 \sin\theta \Rightarrow \theta = -\frac \pi 4$
So: $$1 - i = \sqrt{2}(\cos(\frac \pi 4) + i\sin(\frac \pi 4))$$ $$(1-i)^\frac 1 3 = 2^ \frac 1 6 (\cos(\frac \pi {12} + i\sin(\frac \pi {12}))$$
Am I correct with this derivation?