3

I have found an elegant proof of monotone convergence theorem here. I represent the proof below. It's so simple that I'm afraid if I miss some subtle detail. Could you please check if my understanding is fine?


Let $( X_{n} )$ be a sequence of non-negative random variables such that $X_n \nearrow X$ a.s. Then $\mathbb{E}\left(X_{n}\right) \nearrow \mathbb{E}\left( X \right)$.


Proof 1: For all $n$, there exists a sequence $(X_{n,k})_k$ of non-negative simple random variables such that $X_{n, k} \nearrow X_n$ a.s. as $k \to \infty$. Let $$Y_{k} = \max_{n \le k} X_{n, k}, \quad k \in \mathbb N.$$

Clearly, we have

  • $X_{n,k} \le Y_k \le X_k \le X$ a.s. for all $n \le k$ $(\star)$.

  • $\mathbb E (Y_k) \le \mathbb E (X_k) \le \mathbb E (X)$ for all $k$ $(\star \star)$.

  • $(Y_k)$ is a non-decreasing sequence of simple random variables.

Let $Y=\lim_{k \to \infty} Y_k$. Then $\mathbb E (Y) := \lim_{k \to \infty} \mathbb E (Y_k)$ by definition.

  • Taking the limit $k \to \infty$ in $(\star)$, we get $$\lim_{k \to \infty} X_{n, k} \le \lim_{k \to \infty} Y_k \le \lim_{k \to \infty} X_k \le X \text{ a.s.}, \quad n \in \mathbb N,$$ and consequently $$X_{n} \le Y \le X \text{ a.s.}, \quad n \in \mathbb N \quad (\star \star \star).$$

  • Taking the limit $n \to \infty$ in $(\star\star\star)$, we get $X=Y$ a.s. and thus $\mathbb E(X) = \mathbb E(Y)$.

  • Taking the limit $n \to \infty$ in $(\star\star)$, we get $\mathbb E(Y) \le \lim_{k \to \infty} \mathbb E (X_k) \le \mathbb E (X)$. This completes the proof.


Proof 2: Clearly, $\mathbb{E}\left(X_{n}\right) \le \mathbb{E}(X)$ for all $n$ and thus $$\lim_n \mathbb{E}\left(X_{n}\right) \le \mathbb{E}(X).$$

Take $\lambda >1$ and a non-negative simple random variable $Y$ such that $Y \le X$. Define $A_n = \{\omega \mid \lambda X_n(\omega) \ge Y\}$. It follows from $X_{n} \nearrow X$ that $A_{n} \nearrow A:= \bigcup A_n$.

Let's show that $\mathbb P (A) = 1$. Given $\omega$ such that $X_n (\omega) \to X (\omega)$ as $n \to \infty$,

  • If $X(\omega) = 0$, then $X_n (\omega) = Y (\omega) =0$ and thus $\omega \in A_n$ for all $n$.

  • If $X(\omega) > 0$, then $\varepsilon := \lambda X (\omega) - Y (\omega) > 0$ and there exists $m$ such that $X (\omega) - X_m (\omega)\le \varepsilon$. Then $\lambda X_m(\omega) \ge \lambda X(\omega) - \varepsilon = Y (\omega)$. As such, $\omega \in A_m$.

We also have $\lambda X_n \ge Y 1_{A_n}$ and thus $\lambda \mathbb E(X_n) \ge \mathbb E (Y 1_{A_n})$ for all $n$. As such, $$\lambda \lim_n \mathbb E(X_n) \ge \lim_n \mathbb E (Y 1_{A_n}) \overset{(\star)}{=} \mathbb E (Y \lim_n 1_{A_n}) = \mathbb E(Y 1_A) \overset{(\star\star)}{=} \mathbb E(Y),$$

where

  • $(\star)$ is because $Y, 1_{A_n}$ and hence $Y 1_{A_n}$ are simple.

  • $(\star\star)$ is because $\mathbb P (A)=1$.

Take the limit $\lambda \searrow 1$, we obtain $$\lim_n \mathbb E(X_n) \ge \mathbb E(Y).$$

This inequality holds for any a non-negative simple random variable $Y$ such that $Y \le X$. Then $$\lim_n \mathbb E(X_n) \ge \mathbb E (X).$$ This completes the proof.


Update: After a while, I have found that these two proofs also hold in a more general setting of measure theory. We just need to replace $\mathbb E [X]$ by $\int f \mathrm d \mu$.

Akira
  • 17,367
  • 1
    You say $\mathbb{E}[Y] = \lim_{k \rightarrow \infty} \mathbb{E}[Y_k]$ by definition. $Y$ was defined as an a.s. limit, so $\mathbb{E}[Y] = \lim_{k \rightarrow \infty} \mathbb{E}[Y_k]$ "by definiton" of what? – user6247850 Oct 09 '21 at 01:54
  • @user6247850 In my lecture note, if $X$ is a non-negative random variable, then there is a non-decreasing sequence $(X_n)$ of simple random variable that converges to $X$. Then we define $\mathbb E (X) := \lim_{n \to \infty} \mathbb E (X_n)$. – Akira Oct 09 '21 at 06:56
  • @Akira That isn't the usual definition. The usual definition is $$E(X) = \sup{E(Y) : Y \text{simple}, 0 \leq Y \leq X}.$$ – Mason Oct 09 '21 at 15:21
  • @Mason I think they're equivalent :v – Akira Oct 09 '21 at 15:23
  • @Akira Yes of course. They are equivalent by the monotone convergence theorem. I would think that establishing that your definition is well defined will entail the monotone convergence theorem in some way. – Mason Oct 09 '21 at 15:24
  • @Mason I follow the definition Definition 1.3.10 from this lecture note. – Akira Oct 09 '21 at 15:26
  • @Akira Look at Lemma 1.3.13. That proof is similar to proofs of the monotone convergence theorem. Look at theorem 1.5.10 where the author proves the monotone convergence theorem using an argument similar to yours. – Mason Oct 09 '21 at 15:44
  • @Mason I think the claim $X_{n}^{k} \nearrow X^{k}$ as $n \rightarrow \infty$ is not correct in his proof. You can see in the proof in my post that the sequence $(Y_k)$ is constructed for that purpose. – Akira Oct 09 '21 at 15:47
  • 2
    @Akira Yes I agree, the claim $X_{n, k} \nearrow X_k$ as $n \to \infty$ seems wrong. Your proof looks correct to me. – Mason Oct 09 '21 at 16:21

0 Answers0