3

Let $X$ be a uniformly distributed variable on $[0,1]$. What is the density of $Y=X^4$? How do you calculate it? Thank you

dfeuer
  • 9,069
Ryan
  • 309

2 Answers2

4

In general, if $g$ is monotonic, and $Y = g(X)$, then $Y$ has density $$f_Y(y) = \left| \frac{d}{dy} (g^{-1}(y)) \right| \cdot f_X(g^{-1}(y)),$$ where $f_X$ is the density of $X$, and $g^{-1}$ is the inverse of $g$. See e.g. Wikipedia.

fuglede
  • 6,716
4

We take the slow way, by first computing the cumulative distribution function $F_Y(y)$ of $Y$. So we want $\Pr(Y\le y)$.

First do the really easy parts. If $y\le 0$, then $F_Y(y)=0$. If $y\ge 1$, then $f_Y(y)=1$.

Now we deal with the interesting part, where $0\lt y\lt 1$. For such $y$, we have $$F_Y(y)=\Pr(Y\le y)=\Pr(X^4\le y)=\Pr(X\le y^{1/4})=y^{1/4}.$$

For the density function $f_Y(y)$ of $Y$, find the derivative of $F_Y(y)$.

André Nicolas
  • 507,029