Uniform Convergence
Since the series
$$
g(x)=\sum_{n=1}^\infty\frac1{n^3+x^3}\tag1
$$
converges at $x=0$, it converges uniformly on $[0,\infty)$ by comparison. That is, for all $x\in[0,\infty)$,
$$
\sum_{n=k}^\infty\frac1{n^3+x^3}\le\sum_{n=k}^\infty\frac1{n^3}\tag2
$$
which can be made as small as desired, independent of $x$. Therefore, $g(x)$ is continuous.
Then, $f(x)=x^2g(x)$ is continuous, being the product of two continuous functions on $[0,\infty)$.
The Limit
$$
\begin{align}
\lim_{x\to\infty}\sum_{n=1}^\infty\frac{x^2}{n^3+x^3}
&=\lim_{x\to\infty}\sum_{n=1}^\infty\frac1{(n/x)^3+1}\frac1x\tag{3a}\\[6pt]
&=\int_0^\infty\frac{\mathrm{d}t}{t^3+1}\tag{3b}\\[3pt]
&=\frac13\int_0^\infty\left[\frac1{t+1}-\frac{\left(t-\frac12\right)-\frac32}{\left(t-\frac12\right)^2+\frac34}\right]\mathrm{d}t\tag{3c}\\
&=\left[\frac16\log\left(\frac{(t+1)^2}{t^2-t+1}\right)+\frac1{\sqrt3}\tan^{-1}\left(\frac{2t-1}{\sqrt3}\right)\right]_0^\infty\tag{3d}\\[6pt]
&=\frac{2\pi}{3\sqrt3}\tag{3e}
\end{align}
$$
Explanation:
$\text{(3a)}$: divide numerator and denominator by $x^3$
$\text{(3b)}$: write the Riemann sum as an integral
$\text{(3c)}$: partial fractions
$\text{(3d)}$: integrate the parts
$\text{(3e)}$: evaluate
If we don't mind using contour integration, we could use this answer to evaluate $\text{(3b)}$ directly.
A Closed Form
At the risk of bringing some complex functions into the answer, we can give an explicit sum to the series.
Let $\omega=e^{2\pi i/3}=-\frac12+i\frac{\sqrt3}2$, then because $1+\omega+\omega^2=0$,
$$
\begin{align}
\frac{x^2}{n^3+x^3}
&=\frac13\left(\frac1{n+x}+\frac\omega{n+\omega x}+\frac{\omega^2}{n+\omega^2x}\right)\tag{4a}\\[3pt]
&=-\frac13\left(\left(\frac1n-\frac1{n+x}\right)+\omega\left(\frac1n-\frac1{n+\omega x}\right)+\omega^2\left(\frac1n-\frac1{n+\omega^2x}\right)\right)\tag{4b}
\end{align}
$$
Therefore, using the Extended Harmonic Numbers, $H(x)$:
$$
\sum_{n=1}^\infty\frac{x^2}{n^3+x^3}
=-\frac13\left(H(x)+\omega H(\omega x)+\omega^2H\!\left(\omega^2x\right)\right)\tag5
$$
We can write $(5)$ in terms of the Digamma function, $\psi(x)$, if we note that $H(x)=\psi(x+1)+\gamma$.
The Extended Harmonic numbers are analytic, except at the negative integers. Therefore, the sum is real analytic, thus continuous, on the non-negative real axis.
Asymptotic Series
Using $(5)$ and the asymptotic series for the Harmonic Numbers
$$
H(x)\sim\log(x)+\gamma+\frac1{2x}-\frac1{12x^2}+\frac1{120x^4}-\frac1{252x^6}+\frac1{240x^8}-\frac1{132x^{10}}\tag6
$$
as derived in this answer, we get
$$
\begin{align}
f(x)
&\sim-\frac13\left(\log(x)+\omega\log(\omega x)+\omega^2\log\left(\omega^2x\right)\right)\tag{7a}\\
&\phantom{{}\sim{}}{-\frac13}\left(\gamma+\omega\gamma+\omega^2\gamma\right)
&\text{vanishes}\tag{7b}\\
&\phantom{{}\sim{}}{-\frac16}\left(\frac1x+\frac\omega{\omega x}+\frac{\omega^2}{\omega^2x}\right)\tag{7c}\\
&\phantom{{}\sim{}}{+\frac1{36}}\left(\frac1{x^2}+\frac\omega{\omega^2x^2}+\frac{\omega^2}{\omega^4x^2}\right)
&\text{vanishes}\tag{7d}\\
&\phantom{{}\sim{}}\vdots\\
&\phantom{{}\sim{}}{+\frac1{396}}\left(\frac1{x^{10}}+\frac\omega{\omega^{10}x^{10}}+\frac{\omega^2}{\omega^{20}x^{10}}\right)\tag{7e}\\
&=-\frac13\left(\log(1)+\omega\log(\omega)+\omega^2\log\left(\omega^2\right)\right)\tag{8a}\\
&\phantom{{}={}}{-\frac1{2x}}\tag{8b}\\
&\phantom{{}={}}{-\frac1{120x^4}}\tag{8c}\\
&\phantom{{}={}}{+\frac1{132x^{10}}}\tag{8d}\\
&=\bbox[5px,border:2px solid #C0A000]{\frac{2\pi}{3\sqrt3}-\frac1{2x}-\frac1{120x^4}+\frac1{132x^{10}}}\tag9
\end{align}
$$
Explanation:
$\text{(7a)}$: $\log(x)+\omega\log(\omega x)+\omega^2\log\left(\omega^2x\right)$
$\phantom{\text{(7a):}}$ $=\left(1+\omega+\omega^2\right)\log(x)+\left(\log(1)+\omega\log(\omega)+\omega^2\log\left(\omega^2\right)\right)$
$\text{(7b)}$: $\frac1{x^n}$ in $H(x)$ becomes
$\phantom{\text{(7b):}}$ $-\frac13\left(\frac1{x^n}+\frac{\omega^{1-n}}{x^n}+\frac{\omega^{2(1-n)}}{x^n}\right)=-\frac1{x^n}[n\equiv1\pmod3]$
$\phantom{\text{(7b):}}$ where $[\dots]$ are Iverson Brackets
$\text{(7c)-(7e)}$: same as $\text{(7b)}$
$(8)$: explained in $(7)$
$(9)$: $-\frac13\left(\log(1)+\omega\log(\omega)+\omega^2\log\left(\omega^2\right)\right)$
$\phantom{\text{(9):}}$ $=-\frac13\left(0+\left(\frac{-1+i\sqrt3}2\right)\left(\frac{2\pi i}3\right)+\left(\frac{-1-i\sqrt3}2\right)\left(-\frac{2\pi i}3\right)\right)$
$\phantom{\text{(9):}}$ $=\frac{2\pi}{3\sqrt3}$