Compute the value of the sum $\sum u_n$ where $u_{n}=\frac{(-1)^{n}}{n} \times\left\lfloor\frac{\ln (n)}{\ln (2)}\right\rfloor$.
I already know that this sum converges (see for example Show that the series $\sum_{n>0} \frac{(-1)^n}{n}\left \lfloor \frac{\ln n}{\ln 2} \right \rfloor$ converges ).
But I have no idea how to find the value of $\sum u_n$