0

How can I prove this by induction?
Here's the question

Step 1 ) for $n = 0$ both it's true
Step 2 ) for $n= k$ assume that $\textstyle\displaystyle{(1+\frac{1}3)^k\geq 1 + \frac{k}{3}}$ is true
Step 3 ) prove that for $n = k+1$, $\textstyle\displaystyle{(1+\frac{1}3)^k+1$ \geq 1 + \frac{k+1}{3}}$ is true
I started with the left side $(1+\frac{1}3)^{k+1}$ = $(1+\frac{1}3)^k(1+\frac{1}3)$
then I replaced $\textstyle\displaystyle{(1+\frac{1}{3})^k}$ with my assumption $\textstyle\displaystyle{1 + \frac{k}{3}}$ so now it's $\textstyle\displaystyle{(1+\frac{1}3)^k(1+\frac{1}3)\geq (k+\frac{1}3)(1+\frac{1}3)}$

What should I do next ?

Seba
  • 23

1 Answers1

1

Set $P(n): (1+\frac 13)^n\geq 1+\frac n3, n\in \Bbb N$. We see that $P(1): \frac 43\geq \frac 43$ is true. Suppose that $P(n)$ holds for some $n\in \Bbb N$. Then $(1+\frac 13)^{n+1}=(1+\frac 13)^n(1+\frac 13)\geq (1+\frac n3)(1+\frac13)=1+\frac13 +\frac n3 +\frac n6=1+(\frac 13 +\frac n3)+\frac n6\geq 1+\frac 13 (n+1): P(n+1).$

q.e.d.

SK_
  • 575